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This paper proposes a rapid attitude trajectory generation method for satellite reorientation, which is suitable for
both rest-to-rest and track-to-track maneuvers. The problem is first formulated and solved using academic software
readily used for generating optimal guidance trajectories offline. Then, the problem is reformulated using a Bezier
polynomial parametrization of the quaternion trajectory, which naturally satisfies the unit quaternion norm
constraint. The parameters of the quaternion trajectory polynomial and of the speed profile are varied to arrive at a
quasi-optimal solution that is both feasible and exactly matches the endpoint conditions specified in the problem. The
reduction in the number of varied parameters due to the predetermined structure of the trajectory leads to a fast
computational speed as well as a solution that satisfies the end constraints at each iteration. The paper includes
numerical simulation results obtained for several cases.

L

HE optimal satellite reorientation problem is of general interest

to many in the field of aerospace engineering. The available
literature on this subject is extensive (see for instance [1-5]). Many
civilian and military space missions need to have agile attitude
maneuver capability. For instance, TacSat-3 was intended to demon-
strate responsive delivery of information to operational users [6].
Because of the satellite’s low Earth orbit, the timeline for tasking,
slewing and disseminating data is greatly reduced. Other challenges
include the fact that the tasking can be modified at any moment up to
a short period of time after the ground station starts uploading the
tasking, as well as the idea that TacSat must autonomously slew to the
target, collect and process the data, and then downlink the data
directly to the customer who is not collocated with the ground station.
Finally, current real-time feedback controls are not optimized for
minimum time [2]. The preceding challenges lend themselves to the
need for the ability to rapidly generate feasible trajectories that are
optimized for minimum time.

The goal of the present paper is to provide a method to determine a
feasible attitude trajectory solution that meets endpoint requirements
and dynamic constraints while performing a good overall maneuver
relative to a given performance index. Also, the method should work
for any boundary conditions including nonrest to nonrest (track-to-
track) maneuvers. The major requirement is that the method must
provide a feasible real-time solution as opposed to offline compu-
tations even if it requires some sacrifices in terms of optimality.

The existing techniques include using so-called pseudospectral
methods. These methods can provide an incredibly accurate solution
to an optimal control problem, but may require extended periods of
time to converge, or, in the case of a smaller number of nodes,
converge to a suboptimal solution [7-9]. In addition, the optimal
solution does not have an analytical representation, which may pose
problems when trying to implement it using a feedforward scheme of
suggested control commands [7-9]. If the numerical solution is
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afterwards approximated with some analytical function and/or the
controls are smoothed, it may lose some optimality and the smoothed
solution may not satisfy the boundary conditions.

The authors pursue another approach exploiting the general idea of
the direct optimization methods of calculus of variations together
with an inverse dynamics approach. In particular, polynomials are
used as basis functions to generate trajectories in quaternion space
that can be traversed according to a computed analytic speed profile.
Instead of expressing trajectories in the time domain, an abstract
argument is introduced: this allows the trajectory to be formulated so
as the states and their derivatives are intrinsically and exactly satisfied
at the endpoints. This results in decoupling space and time, allowing
the speed over the trajectory to be varied to satisfy problem con-
straints. The resulting quasi-optimal trajectory solution can be
generated (and updated) rapidly because of the reduction in the
number of varied parameters due to the restriction on the trajectory
structure by specifying a polynomial basis. Although this method
lacks some flexibility due to the predefined structure of the solution,
it provides a feasible solution that satisfies the endpoint constraints at
every iteration, even when the initial conditions change due to
disturbances or delays. Specific applications include scenarios where
derivative conditions on beginning and ending states need to be met,
such as tracking missions, docking missions, and other missions
where a simple eigenaxis slew may be unacceptable.

It should be noted that the use of inverse dynamics to optimize the
rotational motion of a satellite has been evaluated by other authors as
well. In [10,11] Euler angles are used, which suffer from well-known
kinematic singularities, and no attempt to decouple the time and
space domains is made. Furthermore, in [12]a linearized blending of
two spins in quaternion space is used.

The present paper proposes a novel approach resulting in a robust
and fast computational technique. The paper is organized as follows.
Section II describes the problem to be solved as well as the dynamic
and kinematic models. Section III demonstrates obtaining a solution
using an academic solver employing a pseudospectral method.
Section IV introduces the Inverse Dynamics in the Virtual Domain
(IDVD) approach and develops a complete computational scheme
using Bezier curves to parametrize quaternion trajectories, followed
by Sec. V presenting sample solutions. Finally, Sec. VI compares the
results of optimization obtained with both methods.

II. Spacecraft Model and Attitude Trajectory

Optimization Problem
The rotational dynamics of the spacecraft can be described by

Euler’s rotational equations of motion. Written in the body-fixed
principal axes this results in the vector equation [13,14]
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Io+owxIw=T (1)

which expands into the scalar equations:
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InEgs. (2) and (3) I = diag([/,,, ,,, I;]) is the inertia matrix (along
the principal axes), ® = [w,,®,,®.]” is the vector of angular
velocities, and T = [T, T, T.]" is the vector of torques (bounded
controls).

In turn, rotational kinematics can be described using quaternion

q=1[91.92. 43, qs]" as: [13,14]

q-l 0 w, _a)y , q1

Q2 _ 1 —w, 0 [ wy q> _ 1 Q 3
qs 2 Wy —Wy 0 w, q3 2 1% ( )
n -0, -0, —o, 0 94

where the symbol ® is used to indicate the quaternion multiplication
operation, and ® = [w,, w,, @, 0]".

The problem in question is to find the slew trajectory (quaternion
time history) for a satellite subject to specific constraints that
minimizes the time to complete the maneuver ;. This is expressed as
minimizing the performance index:

J:fm 4
0

while reorienting a satellite from the initial conditions w, qq to the
final conditions @ /, q ; for a system (2) and (3), subject to constraints
on controls

Tmin = T = Tmax (5)

Bilimoria and Wie [3] formulated this problem for a rest-to-rest
maneuver and presented the solution obtained by using an indirect
method. They showed that, in general, for the case of a symmetric
body with bounds on each torque component, it results in a non-
eigenaxis maneuver. In addition to that, the following section
presents a more general solution obtained offline to be used along
with that of [3] as a reference for the proposed online solution
obtained using a direct method exploiting the inverse dynamics of
Egs. (2) and (3).

To this end, Table 1 shows two different test cases examined in this
paper. Test Case 1, representing an idealized rather than real space-
craft, was taken directly from [3], while another was chosen to
illustrate a more general scenario, when a spacecraft is not neces-
sarily symmetric.

In terms of the endpoint conditions the paper considers two basic
scenarios assuming ¢ = 90° and ¢ = 180° slew maneuvers about the
z-axis (so that o = [0, 0,0, 1]" and q; =[0,0, sin} ¢, cos 1 ]") with
zero and nonzero normalized body rates at the endpoints
(@g =w; =05, andwy, = —@; # 05, Finally, for the normalized
states, the constraints () take the form —15,; < T < 15,,.

All computations were carried out on a 2.33 GHz Dell Precision
MO90 desktop computer with an Intel T7600 processor and 1 Gb of
RAM. As the optimization engine, SNOPT [15], the Gauss Pseudo-
spectral Optimization Software (GPOPS) [16], and MATLAB [17]
fmincon function (IDVD) were used. For the sake of completeness

Table 1 Description of the test cases

Case Normalized inertia matrix
Case 1 I = diag([1, 1, 1])
Case 2 I = diag([3, 1,2])

and repeatability it should also be noted that while the IDVD solution
was obtained in the purely interpretative environment of MATLAB,
SNOPT used a library of optimized executable files and, therefore,
was much more computationally effective.

III. Solving the Problem Using the Gauss
Pseudospectral Method

Before proceeding with the proposed online solution, consider the
problem formulated in the previous section using one of the
prominent pseudospectral (collocation) methods. The goal is to have
some reference solutions and also to see if the solutions obtained
using this approach can be reliably used for online optimization.

It should be noted that the Bilimoria and Wie [3] solution has been
previously reobtained [18] by using the commercial software
package DIDO [19].

The GPOPS package was chosen for the present work because of
its open source nature and free availability [16].

Figures 1-8 show the minimum-time solutions for a 180° slew of a
satellite obtained by applying GPOPS. Specifically, Figs. 1 and 2
present time histories of all states and controls for the solution that
involves 100 nodes, which results in (100 — 2) x 10 = 980 variable
parameters. Figure 3 depicts the three-dimensional (3-D) represen-
tation of the solution in inertial space, clearly showing that it is not an
eigenaxis maneuver, with an inclination of the z,, axis during rotation
in the x,y, direction. This solution compares with the solution
presented in [3] fairly well. The final calculated maneuver time, 7,
was found to be 3.243 s. However, it took almost two hours of CPU
time to obtain this solution. Another observation is that because of
the nature of the system (2), the optimal control has a bang—bang
structure (Fig. 2). That results in the maximum magnitude of the
angular acceleration at the boundary points (for Case 1 angular
accelerations are simply equal to the corresponding controls). Also,
if we are to update a trajectory while the satellite performs this
rotation (to accommodate possible disturbances and unmodeled
dynamics), it would cause discontinuities of angular acceleration
(sudden jumps in controls). Increasing the order of the system to
account for the boundary conditions on angular accelerations will
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Fig. 3 The 3D representation of the solution for Case 1 (100 Nodes
GPOPS Solution).

L o ]
g 05 1 I
0| — — 0, ™~ b
T
05F |- 0y 1
-1t L L L L L =
0 05 1 15 2 25 3 35

~ - 2

0 05 1 15 2 25 3 35
Fig. 4 Case 1 comparison of time histories of angular velocity
components obtained for 25 nodes (top) and 50 nodes (bottom) for
GPOPS solution.

obviously cause a slight degradation of the performance index and a
further increase of the required CPU time to obtain a solution. Hence,
although in this case GPOPS does produce a valid solution, it is not
practical and cannot be used for online computations.

As pointed out in [20], reducing the number of nodes may lead to a
more robust (in terms of computational time) result, therefore an
attempt was made to obtain a solution of the same problem using a
smaller number of nodes. These GPOPS solutions are shown in
Figs. 4-6.

Itresults that, if the number of nodes is reduced, GPOPS converges
to different solutions (it is indeed a well-known fact that different
solutions exist [4]). To this end, Fig. 4 shows time histories of the
angular velocity components for the 25 and 50-node solution
(involving 230 and 480 varied parameters, respectively). Obviously,
they are different from the 100-node solution in Fig. 2. While a 25-
node solution is simply symmetrical with respect to the 100-node

»»»»»»» axis xb(t=0)
— — axis yb(t=El)
axis z,(t=0)
Tl o+ %0
0.8+ . YW N
______ 7 (t
- 064 o0
8 +
5 .+
£ 0.4+ . ‘
N .+ *
024 Y+ ’ + 4+
04 + ——
E o 1

05 X
Yinertial inertal

Fig. 5 The 3D representation of the 25-node GPOPS solution for
Case 1.
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Fig. 6 Case 1 comparison of time histories of torques, obtained for 25
nodes (top) and 50 nodes (bottom) for GPOPS solution.

solution, as can be seen by comparing Figs. 3 and 5 showing an
inclination of the z,, axis during rotation in the —x,y,, direction, and
represents another equally optimal solution out of possible four
solutions, a 50-node solution appears not to be valid (optimal) at all
(Fig. ).

As expected, decreasing the number of nodes leads to a substantial
decrease in the computational time, but as shown above the method
could produce a nonvalid solution. Also, even if it produces valid
time histories for control torques, it may not be trackable by the inner-
loop controllers. These give two more reasons why the solutions
obtained using pseudospectral methods may not be used in a real-
time feedforward control scheme.

For Case 2, the nonsymmetrical inertia with the bounds on
individual control torques, the solution is slightly different (Figs. 7
and 8). The overall characteristic of this and other solutions involving
different sets of the boundary conditions will be presented in Sec. V,
but the general tendency is the same: it requires at least a hundred
nodes to produce a valid and feasible offline solution. Yet, GPOPS
presents a good and easy-to-use tool to produce reference trajectories
that can be used for comparison with solutions obtained using other
approaches, like the Inverse Dynamics in the Virtual Domain that
will be introduced here below.

IV. Inverse Dynamics in the Virtual Domain Approach

One of the two main ideas of the Inverse Dynamics in the Virtual
Domain (IDVD) method is exploiting the differential flatness
property of the equations of motion [20-23]. In the considered
problem, this relates to the fact that all the state and control variables
can be expressed as functions of the output variable or its time
derivatives, which in this case is the quaternion itself:

® =fl(q’(.])7 T=f2(q’q7q) (6)
Another aspect of IDVD involves handling computations in the
virtual domain, allowing space and time decoupling. As conse-
quence, a trajectory can be computed while manipulating the speed at
which this trajectory is followed.

The following presents a novel parameterization for the output
variable, i.e., the quaternion, and develops a step-by-step compu-
tational routine (see also the pseudo code in the Appendix).

A. Quaternion Trajectory Parameterization

To parameterize the problem, the output trajectory structure is
imposed by using some combination of basis functions. The standard
approach would be to choose some combination of polynomials or
trigonometric functions for the output variables [20-22]. While this
may be straightforward when dealing with state variables in
translational space, it may become more challenging when dealing
with attitude representation.

Even though using quaternions is an advantageous method to
express attitude because of the absence of singularities, choosing
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Fig. 8 Time history of the controlling torques for Case 2 (100 Nodes
GPOPS Solution).

basis functions becomes more challenging because a nonlinear unit
norm condition needs to be preserved across the quaternion history
[23]. For this reason, a specific expression for the quaternion was
chosen according to the work of Kim et al. [24]. In particular, the
quaternion time history is expressed as a product of exponential maps
containing a constant parameter multiplied by a Bezier polynomial of
degree n, as follows:

q(0) =gy ® [ [ exp(@,B,,.(0)) ()
i=1

where the symbol IT is used to indicate the quaternion product of
sequence and

B,»,n(r)=Z(’;)(1—r)"ffrf, and &, = log@, ® @)

j=i

®)

where q; are constant quaternions that act as control points, and
the following definitions apply for the exponential and logarithmic

maps [24]
T
q = exp(v) = [sin(%) P cos(‘—;') ] [v]| #0
[0 0 0 1] [v|=0
v = log(q) ©)

_ 2(;%%7:%)[% @ I JOa+a+a#o
- 1 2 3
[0 0 0] Vai+a3+q3=0

The exponential map in Eq. (9) can be interpreted as a mapping from
the vector v into a unit quaternion, where the vector v is a vector
having the direction of the Euler’s axis and the magnitude equal to the
Euler’s angle of the resulting unit quaternion q. The map becomes
one to one if the domain of the exponential is limited so that |v| < 27
[24]. In particular, exp(v) gives the quaternion g corresponding to the
orientation obtained, from the initial orientation [0 0 0 1], by
rotating of an angle |v| around the fixed direction ﬁ This is also the
direction of the angular velocity if the particular case of rotation
about a fixed axis is considered. On the other hand, the logarithm map
in Eq. (9), gives the vector having the direction of the Euler’s axis and
the magnitude equal to the Euler’s angle of the orientation from
[0 0 0 1] toq.In general, given any two unit quaternions,
and q,, it is possible to express an interpolating curve y, ,, € S3,

parametric in 7, which connects q, to q, along the geodesic on the
four dimensional sphere (i.e., through an eigenaxis rotation). A
general expression for this curve is y,,, = q; ® exp[f(r)
log(qy! ® q,)], with 0 < f(r) < 1. If f f(z) = 1, the curve gives
a linear interpolation in the parameter 7. Equation (7) uses instead an
interpolation based on Bezier polynomials.

In summary, by using Eq. (7), the quaternion q(7) is obtained
by the quaternion product of n -+ 1 quaternions (q,exp
(@,8,,(2),...,exp(®@,B,.,(1))): i.e., the orientation correspond-
ing to q(7) is assumed as a sequence of n rotations (instantaneous in
7), starting from the orientation corresponding to q, with the ith
rotation being an eigenaxis rotation of amplitude (8; ,(7)|®,|) about
the axis % Since |exp(v)| =1 Vv, as defined in Eq. (9), the
resulting quaternion of Eq. (7) verifies the unit norm constraint for
any .

Itis important to note that in Eqs. (7) and (8) t € [0; 1] is an abstract
argument that is used instead of time. This is a key point of the IDVD
method and, in this particular case, allows to exploit interesting
attributes of the Bezier polynomials and define properties at the
boundaries.

For example, the analytic expressions of the fifth-order Bezier

polynomials, B; 5(t), are as follows:
BI.S(T) =7 -5 +1073 — 102 + 57
Bos(1) = —475 + 15¢ — 207° + 1072
By 5(r) = 615 — 15¢* + 1073
l§4.5(f) = —47° 4 574, 55,5(1’) =7 (10)

These expressions have the favorable properties:

B:s(0)=0 and B;s(1)=1, fori=1,...,5 (11)

Bis0) =Bss()=5 Bis(1)=p550)=0
Bis(0) = Bis(1) =0, fori=23,4 (12)

Bs(0) = Bis(1) =20,  Bis(1)=p55(0)=0
Brs(0) = Bis(1) =20,  Bys(1)=Pis(0)=0
Bi5(0) = Brs(1) =0 (13)

which fix the value of the polynomials and its derivatives at the
endpoints. The prevailing idea is that q(t = 0) = qpand q(z = 1)=
(s, where we can define

2 qo and qs 2 q(t;) =qy (14)

4
The parametrization of the quaternion trajectory, given by Eq. (7),
results in a convenient calculation of derivatives with respect to the
virtual domain argument t. The results for the first derivative for a
third-order Bezier polynomial were presented in [24]. In general, the
first-order derivative with respect to the argument t is given by:
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dq exp(@151.,(1) ® 2151,,(x) ® exp(@:5,,(1) ® ... ® exp(@, B, (1) +
q,(‘[) = a (T) ={qo ® CXP(C:)]ﬂLn(;[)) ® exp(d}2ﬁ2,n(;[)) ® “22:3,2.}1(‘[) ® B Qexp((bnﬂn.ﬁ(‘[)) + ...+ (15)
exp(("}lﬂ],n(r)) ® eXP(‘:)zﬂz_n (T)) ®...8 exp((z)nﬁn.n (T)) ® Qnﬂ;l.n (T)

where !Z (@i, Dy @i, 0], Note that collecting the terms in
Eq. (19 into q'(0) =3 (D) =4y ® X}, (2,8,() ® [T,
exp(@;B;,(r)) would lead to an incorrect expression, since the
quaternion product is not commutative.

Similarly, the second-order derivative is calculated starting from
the expression of Eq. (15), by applying the chain rule as follows (only
the derivative of the first element within the brackets of Eq. (15) is
completed below):

completed the inversion of the dynamics (see below), a continuous
control history is available, whose resolution does not suffer from a
limited number of node points.

Although a speed factor of the form in Eq. (20) does not allow
matching the optimal minimum-time solutions precisely, varying the
parameters contained within A(t) (a, b, ¢, d, and e) still allows
sufficient variation of the speed along the trajectory defined by
Eq. (7) to produce feasible and easy to track solutions.

eXp(")llgl n(r)) ® ‘Q ﬂl n(f) ® Q /31 n(t) ® exp(wZﬂZ n(r)) ®...8 exp(a)nﬂnn(r))+

p dq’
q (r)=—Ol ()=q,®
T

exp((‘olﬁl n(r)) ® ‘Q ﬂ/l/ ,,(T) ® exp(wZﬂZn(T)) X...0 exp(wnﬁn n(r))+ (16)
eXp(")llgl n(r)) ® ‘Q ﬂl n(f) ® €Xp((l)2,32n(f)) ® '(22/32 n(r) ®...8 eXp((l)nﬂ,ln(T))+

exp((‘)lﬂl,n(r)) ® Qlﬂl.n(f) ® exp((‘)Zﬂln(T)) ® e ® exp(wnﬂn,n(f)) ® Qnﬂn,n(r) + ...

The reason to expand the polynomial from a third-order (as shown in
Kim et al. [24]) to a fifth-order is that it is desired to fix the first- and
second-order derivatives of the quaternion function at the endpoints.
In particular, for the case of fifth-order Bezier polynomial, by
applying Egs. (10-13), the derivative values at the endpoints can be
calculated with the simple expression:

dq

- d
:5q0 ® Ql* _q
dr

5| =54 ® 9 (17)

=1

=0

Note that in Eq. (17), the first-order derivative of the quaternion
describes how the vector parameters @, and @5 are related to the
angular velocity at the endpoints. In a similar fashion, it yields

2 - - -
‘;_‘21 = —20q, ® 2, +25q, ® 2 +20q, ® 2,
T° |t=0
d’q p 9 ~—1 5 52
=1

(18)

B. Mapping from the Virtual to Time Domain

Now that the trajectory is parameterized as a function of the virtual
domain variable 7, a mapping must be employed to convert this
trajectory into a time dependent one. To do this, a speed factor A > 0
is defined that maps the points of the trajectory from the virtual
domain to the time domain:

© dr
o A(D)
The more complex is the structure of A(7), the more flexibility is
provided in the definition of the trajectory. However, for this

application, we restrict A(7) to a positive value function that contains
a reduced number of varied parameters as follows:

d
A(2) :d—:, 1(x) = (19)

AMy=a+b*+c(1—1)>+d(1—(1—-1)%) +e(l —7%) (20)

The analytical integral of Eq. (19) not only provides computational
efficiency and an accurate integration to the minimum-time
performance index, but also provides a continuous mapping from the
virtual domain to the time domain. Alternatively stated, once

C. Inverting the Dynamics

As a result of the mapping from virtual to time domain, the
expression for the derivatives of q with respect to time is:

da) _da(o),

q(t(2)) = q(v), q(1(v) = - d
T
. d’q(r) d%*q(7) dq(z)dA
4((@) = aZ  d A+ dr dr @b

Note that if the trajectory in the virtual domain q () is specified along
with the speed trajectory A(7), the resulting trajectory of q(t) as well
as its derivatives can be analytically expressed and mapped to the
time domain.

Inverting the kinematic Eqgs. (3) and differentiating the obtained
expression, results in the following expressions of the angular
velocity and angular acceleration:

2(1) =2q7"'(1) ® q(1).
a()=2q"'O®4(N—q (N ®q(1) @ (1) =2q"' (1) ® 4(1)

—%ﬂ(z) ® L) =2q""(1) ®q(t) + %wz(t)l (22)

where o = [0, o), 0, 0", ?(r) = |@(1)]>, and 1=10,0,0,1]".
The first equation of Eq. (22) is obtained from Eq. (3), while the
second one is obtained by taking the time derivative of Eq. (3) and
solving for e (¢). Furthermore, it is immediate to get the reciprocal
q~'(¢) from the quaternion q(#) by considering that for a unit
quaternion the reciprocal is equal to the conjugate q* (7).

The torque history needed to follow such a trajectory is calculated
by inverting Eq. (2):

To(1) = o, (1) + (I — L))oy (D (1),
Ty([) = ay([) + (I,YX - Izz)wx(t)wz(t)’ (23)
Tz(t) = az(t) + (Iyy - Ixx)wy(t)wx(t)

D. Matching Initial Conditions

From the preceding equations, a quaternion history can be
developed based on the Bezier polynomial that satisfies predefined
quaternion values as well as angular velocities and angular
accelerations at the endpoints. In particular, this section explains how
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the value of the parameters defining the Bezier polynomial expansion
is computed. The desired angular velocity and acceleration dictate
the quaternion derivatives at the endpoints to be as follows:

§(0) = 340) ® 20)

i) =5a() ® 20)

.. 1 1

i0) = 3a0) ® [a0) - 3020)|

.. 1

q(ty) = %Q(ff) ® |:05(ff) - sz(lf)] (24)

Based on the properties of the fifth-order Bezier polynomial, the
coefficients of the quaternion expression are then calculated by:

- 2(0)
= 25
2, 101.(0) 25)
~ 'Qf
= 26
2s 101 (1) (26)
— iq(0) q(0) o 2
92:%f®m@ G0l + 2002, — 252 on

20

24

7' @ ([ —H0%| 14209, ® 2, +25¢,® 2]) ®q;' ®d,
20

(28)

In particular, Egs. (25) and (26) are obtained from Eqs. (17) and (21).
Furthermore, Eqs. (27) and (28) are obtained from Eqs. (18) and (21).
Finally, the complementary parameters q; are defined as:

q, = q ® exp(@,), GW=q;® exp(ds) ! 29)
and
4, =q; ®exp(®,). 4 = G4 ® exp(@,) ! (30)
Finally,
@5 =log(q;' ®qs) (3D

The resulting benefit of this laborious formulation is that the attitude
trajectory history of the quaternion q that satisfies the unit norm
constraint can be specified using a reduced set of parameters. These
parameters are the initial and final conditions on the quaternion itself
as well as the values of the angular velocity and angular acceleration
at those endpoints.

E. Increasing the Polynomial Order

More flexibility in the trajectory can be obtained by increasing the
order of the Bezier polynomial used in the basis function. For the case
of a seventh-order polynomial, the same structure as Eq. (7) is
employed with n = 7. This leads to the introduction of q¢, 7, @,
and @, which must be defined to be consistent with previous
definitions from Eqs. (7) and (8). If the values of orientation and
angular velocity at the endpoints are set, endpoint conditions of
angular jerk as well as angular acceleration can be used as varied
parameters. Setting a specified (low) value for the initial and final jerk
can be critical for slewing maneuvers of flexible spacecraft, to avoid
excitation of structural modes.

To do this, the third-order derivative of the output vector is
calculated as:

d’q 'y d’q ., dA d’qdr ., dqd®i.,
——)n d 22)x—)\+dTE)x +d‘L’d‘[ A
di
e f (et 2
+a (a) )

The new expressions for the virtual derivatives (taken with respect to
the virtual argument ) are also recalculated and are analogous to
Egs. (16) and (17), but with the addition of a third derivative to
accommodate the change between a fifth- and seventh-order
polynomial:

Q0 =700 2,, qlo =73 ® 25 33)

q"|r—o = 494, ® 27 + 424, ® 2, — 424, ® 2,
Q"= =424, ® 2, + 494, ® 27 — 22, ® (34)

q"|,—o = 343q, ® 2, — 8824, ® 2] — 4204, @ 2,
+ 2104, ® 2, + 2104, ® 25 + 882q,2, ® 2,
Q"= = 3434, ® 27— 8824, ® 2, ® 2, ®§;' ® 4
+ 21025 ® §7 + 210, ® 2, + 8824, ® 27
+ 8824, ® 2, ® 2, — 42024 ® §; 35)

New values for the constants that fix the initial conditions of the
quaternion trajectory can be calculated similarly to the fifth-order
polynomial case, except that an extra step needs to be taken to
accommodate the third-order derivative of q.

V. Solving the Problem Using the IDVD Method

This section presents the results of the IDVD method using two
different parameterizations to obtain the minimum-time solutions of
the problem posed in Sec. II. As discussed in the previous section, as
opposed to hundreds of varied parameters as in the case with the
pseudospectral methods, the list of parameters to be optimized using
IDVD includes only 11 variables, in the case of fifth-order quaternion
parametrization, and 17 variables in the case of seventh-order quater-
nion parametrization. In particular, in case of fifth-order parame-
trization, the optimization variables are the boundary values of all
three components of the angular acceleration plus the five coeffi-
cients defining the virtual speed profile [see Eq. (20)], while the
quaternion and angular velocity at the beginning and end of the
slewing are given data. Increasing the order of quaternion approx-
imation polynomials from 5 to 7 allows to assign also the boundary
conditions for angular acceleration and varying the boundary values
of angular jerks (note that, with IDVD to satisfy the higher-order
derivatives at the boundary points there is no need to introduce new
equations of motion). However, in what follows, for the seventh-
order polynomial both the angular jerk and angular acceleration will
be varied (i.e., 12 optimization parameters in addition to the five
parameters of the speed profile, for a total of 17 parameters). This is
done to show the improvement of the performance index to match
that of the GPOPS solution.

During the optimization process the constraint is imposed that the
resulting control must obey Eq. (5) and A(z) > 0. Initial guesses for
the angular acceleration and jerk were taken to be equal to zero, initial
guess for the zero-order coefficient of A(7) is a = 2 5 ; initial guess of
all of the other parameters of A(7) is zero. The initial guess value of a
is an approximate estimate of the inverse of the time it takes to change
attitude by an angle ¢ with the maximum angular rate. This choice of
initial guesses contributes to have a feasible initial solution.

A. IDVD Solutions Using Fifth-Order Bezier Polynomial

Figures 9—11 present the results obtained applying the IDVD with
a quaternion based on a fifth-order Bezier polynomial (compare it
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Fig. 10 Time history of controlling torques for Case 1 (fifth-order
Bezier polynomials IDVD solution).

with the GPOPS solution presented in Figs. 1-3). The solution was
run using 100 points (although, as opposed to GPOPS, it would make
no difference running it for a larger or smaller number of points), and
resulted in a slightly higher value of #,, but it took significantly less
time to converge (to be discussed further, in Sec. V). Figure 12 shows
the virtual speed factor, the key element in matching the virtual and
time domains.

The major difference compared with the GPOPS solution is that
the controls do not have a bang—bang nature. Again, this was done
choosing the proper quaternion parameterization. When imple-
mented in the real-time controller, these controls may be easier to
track. Also, having different controlling torques at the endpoints,
means having different angular accelerations. While for the GPOPS
solution the initial and terminal angular accelerations are at the mercy
of the optimization routine, using IDVD allows matching them with
the current accelerations, making the control algorithm more robust.

The resulting solution for the same scenario using just 25 nodes is
shown in Figs. 13—15. As in the case of GPOPS, it also converges to
another equally optimal solution.
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Fig. 11 Principal axis outline of 180° slew for Case 1 (fifth-order Bezier
polynomials IDVD solution).
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With any number of nodes the IDVD solution results in a smooth
control history, readily available to be fed forward to the tracking.

As in the case of the GPOPS solution for Case 2, the nonsym-
metrical inertia matrix causes certain changes as compared with the
symmetric matrix solution. The 100-node IDVD solution in this case
results in 4.767 s maneuver and requires about a minute to compute
(see Figs. 16-18).

B. IDVD Solutions Using Seventh-Order Bezier Polynomial

To compare the results obtained using different polynomial orders,
Figs. 19-21 present the solution of the same problem using a
quaternion based on a seventh-order Bezier polynomial with angular
acceleration and jerk varied at both ends at the trajectory. As shown,
this brings a solution closer to that of GPOPS but doubles the
computational time required to converge. The following section
addresses this issue in more detail.

VI. IDVD vs GPOPS Results Comparison

This section presents a comparison of the results obtained using
the IDVD method with those of the GPOPS method. It disregards the
fact that the results obtained with GPOPS for low number of nodes
are infeasible, but rather concentrates on the computational advan-
tages the IDVD approach has for any number of intermediate points
(nodes in the case of GPOPS). To start with, Tables 2 and 3 sum-
marize the 180° rest-to-rest slew maneuver solutions for symmetric
and asymmetric inertia matrix, obtained using GPOPS and IDVD as
discussed in Secs. III and V.

In these tables, all results are compared versus the eigenaxis
maneuver solution. First, it is shown that the true optimal solution,
obtained offline in [3], which is not an eigenaxis rotation, provides
about 8.5 and 11% improvement of the performance index, the
maneuver time 7, for Case 1 and Case 2, respectively. It would be
appropriate to exploit this economy solution onboard, but unfortu-
nately it cannot be produced in real time and hence the need for other
methods still arises.

As seen from Tables 2 and 3 the GPOPS solution converging to
one of the equally optimal solutions, assures about the same gain in
the performance index as in the truly optimal one. But again it takes
too much computational time to be implemented onboard. Specifi-
cally, the 100-node solution that does converge and assures a smooth
controls history, takes about an hour to converge.

As discussed in the previous section the IDVD solution has a much
more robust performance, allowing computing the same type of
maneuvers just in a few seconds as opposed to hours (using an
executable optimization library the IDVD method produces solu-
tions in fractions of a second [22]). Of course, some of the optimality
(performance index value) has to be sacrificed. On the positive side,
the solution is always feasible and smooth for any number of compu-
tational points, and can be brought closer to the GPOPS solution (in
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Fig. 19 Time histories of the states for a) Case 1 and b) Case 2 with 100 nodes (seventh-order Bezier polynomials IDVD solution).
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Fig. 21 Mapping the virtual and time domains for a) Case 1 and b) Case 2 solutions with 100 nodes (seventh-order Bezier polynomials IDVD solution).

terms of the value of a performance index) by increasing the number for better tracking performance, to be increased without complex
of varied parameters (the order of the quaternion approximation interpolation schemes or recalculating the entire solution.

polynomial). Furthermore, IDVD has an analytic representation of In conclusion, the GPOPS candidate solution should use no less
the solution, which allows the number of nodes generated, possible than 100 nodes, and about 10% gain in the performance index “costs”

Table 2 The 180° rest-to-rest slew maneuver about the z-axis, symmetric inertia (Case 1)

Trajectory generation Nodes Computational Cost % Improvement
method time, s (tr)
Eigenaxis e e 3.5449 ~0%
Optimal — — 3.2431 8.51%
(Bilimoria/Wie [3])
GPOPS 25 15.5 3.2573 8.11%
GPOPS 50 200.5 3.2859 7.31%
GPOPS 100 5962.8 3.2430 8.52%
IDVD fifth-order 25 3.7 3.4289 3.27%
IDVD fifth-order 50 4.8 3.4373 3.04%
IDVD fifth-order 100 10.0 3.4382 3.01%
IDVD seventh-order 25 44.0 3.3756 4.78%
IDVD seventh-order 50 69.8 3.3769 4.74%
IDVD seventh-order 100 121.2 3.3776 4.72%

Table 3 The 180° rest-to-rest slew maneuver about the z-axis, asymmetric inertia (Case 2)

Trajectory generation Nodes Computational time, s Cost (t) % Improvement
method

Eigenaxis E— ~0 5.0133 ~0%
GPOPS 25 222 4.4609 11.02%
GPOPS 50 520.1 4.4499 11.24%
GPOPS 100 1893.9 4.4528 11.18%
IDVD fifth-order 25 4.8 4.7857 4.54%
IDVD fifth-order 50 7.6 4.7861 4.53%
IDVD fifth-order 100 9.5 4.7864 4.53%
IDVD seventh-order 25 24.3 4.6768 6.71%
IDVD seventh-order 50 41.2 4.6846 6.56%

IDVD seventh-order 100 80.4 4.6869 6.51%




1206

BOYARKO, ROMANO, AND YAKIMENKO

Table 4 The 90° rest-to-rest slew maneuver about the z-axis, symmetric inertia (Case 1)

Trajectory generation Nodes  Computational time, s Cost (t;) % Improvement
method
Eigenaxis E— e 2.5066 ~0%
GPOPS 25 20.7 2.4336 291%
GPOPS 50 120.0 2.4332 2.93%
GPOPS 100 236.28 2.4296 3.07%
IDVD fifth-order 25 5.8 2.5654 —2.34%
IDVD fifth-order 50 7.2 2.5666 —2.39%
IDVD fifth-order 100 9.4 2.5671 —2.41%
IDVD seventh-order 25 39.7 2.5043 0.09%
IDVD seventh-order 50 58.9 2.5058 0.03%
IDVD seventh-order 100 773 2.5058 0.03%

“Solved recursively using previous 50 node solution as initial guess.

Table 5 The 90° rest-to-rest slew maneuver about the z-axis, asymmetric inertia (case 2)

Trajectory generation Nodes Computational time, s~ Cost (7;) % Improvement
method

Eigenaxis e ~0 3.5449

GPOPS 25 17.4 3.4450 2.82%
GPOPS 50 166.0 3.4408 2.94%
GPOPS 100 1432.1 3.4430 2.87%
IDVD fifth-order 25 59 3.6277 —2.33%
IDVD fifth-order 50 9.8 3.6307 —2.42%
IDVD fifth-order 100 17.3 3.6316 —2.44%
IDVD seventh-order 25 41.5 3.5373 0.21%
IDVD seventh-order 50 80.4 3.5389 0.17%
IDVD seventh-order 100 158.8 3.5394 0.16%

Table 6 The 90° maneuver for symmetric inertia (case 1) and nonzero boundary rates

Trajectory generation Nodes  Computational time, s Cost (1) % Improvement with
method respect to GPOPS
100 solution
GPOPS 25 48.3 2.4028 —0.07%
GPOPS 50 333.9 2.4016 —0.02%
GPOPS 100 1182.6 24011 0.00%
IDVD fifth-order 25 59 2.5437 —5.94%
IDVD fifth-order 50 5.6 2.5450 —5.99%
IDVD fifth-order 100 6.1 2.5451 —6.00%
IDVD seventh-order 25 279 2.4885 —3.64%
IDVD seventh-order 50 41.5 2.4895 —3.68%
IDVD seventh-order 100 90.6 2.4896 —3.69%

an order of an hour of CPU time. As discussed in Sec. I11, this solution
features a bang—bang control, i.e., does not account for controllers’
dynamics, and therefore can still not be used onboard as is. On the
other hand, the always-feasible and ready-to-go IDVD solution
(employing as low as say 25 computational points) can be produced
much faster, but surrenders up to two-thirds of its gain as compared
with that of the GPOPS solution (about one half for the seventh-order
approximation).

Tables 4 and 5 present similar data for the 90° rest-to-rest slew
maneuver. While GPOPS provides about 3% gain compared with a
simple eigenaxis slew solution, the IDVD method has almost no
advantage or may be even worse if using a fifth-order quaternion
approximation. All major conclusions, however, remain the same.

Table 6 compares GPOPS and IDVD solutions for one of such
cases, when w, = —w, = 1—1013X 1 (other sets of nonzero boundary
conditions were explored as well, and proved to maintain the same
trends). In this table all results are compared against a valid 100-node
GPOPS solution. As seen, the GPOPS solutions with a lesser number
of nodes produce somewhat infeasible solutions, meaning that they
cannot be implemented in the control scheme explicitly. The IDVD
solutions may yield to GPOPS as much as about 4% with respect to
the performance index, but again are produced much faster.

Furthermore, while the 90 and 180° rest-to-rest slew maneuvers with
zero boundary rates feature multiple equally optimal solutions, so
that both GPOPS and IDVD solutions converge to different
solutions, when changing the number of nodes (GPOPS)/computa-
tional points (IDVD), in the case of nonzero boundary rates they all
converge to the same solution as illustrated in Fig. 22.

It should be noted that in practice, the direct methods would likely
be used also in situations where the end-conditions (angular rates,
accelerations) of the slew are specified and not equal to zero. For this
case no simple eigenaxis slew solution exists and therefore any
solution produced online would be good.

The final observation is that apparently there is no need to use as
complex of an approximation for the speed factor A(7) as that of
Eq. (18). By looking at Figs. 12, 15, 18, and 21 it appears that the
number of coefficients (varied parameters) can be easily reduced to 3
(which would result in even faster convergence, but at the cost of a
slightly larger performance index):

AMr)=a+ bt + c7? (36)
In this case the optimization routine should assure the following
inequalities hold:
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The inverse dynamics optimization method with the novel
quaternion approximation functions proposed in this paper allows
computing feasible solutions fast enough to be used onboard satel-
lites for online computation of slew maneuvers. Moreover, because
of the smooth control histories it can be implemented in the control
schemes involving a feedforwad loop. Compared with the true time-
optimal solutions the inverse dynamics trajectories do not have a
bang-bang control, which results in a slightly worse performance
index. However, smooth controls benefit other mission preferences
of having desired rates at the endpoints. In addition, it is a definite
advantage in rapidly changing acquisition or tracking scenarios and
when the slewing spacecraft possesses low-frequency flexible
modes. The formulation presented in this paper is currently being
applied to situations where the attitude is coupled with other dyn-
amics such as translational motion in rendezvous and docking
applications. In this case, a simple eigenaxis slew would not meet
mission criteria such as matching rotational motion.

Conclusions

Appendix

In this Appendix, the pseudocode is provided for the IDVD
optimization algorithm introduced in Sec. IV. The case of using a
fifth-order Bezier quaternion parametrization is presented here; the
procedure is analogous for the seventh-order Bezier parametrization
case.

Given the following data, where q(0) and q(¢;) are the start and
end orientations; @(0) and w(z;) are the start and end angular
velocities;

I = diag([1,,.1,,, 1 ;]) is the inertia matrix; and T,;, < T < T«
are the constraints on torques:

Step 1) The nonlinear programming solver sets new iteration
values of the following optimization variables (for the first iteration,
initial guess values are used): @, (0), @, (0), w5 (0) are components of
angular acceleration at start; @(f;), w,(t;), and ws(t;) are
components of angular acceleration at end; and a > 0, b > 0, ¢ > 0,
d >0, and e > 0 are defining A(7) [see Eq. (20)].

Step 2) Evaluate A(7) and A'(7) at a desired set of evaluation points
7 (e.g., at 100 points within the interval O <> 1) by using Eq. (20).

Step 3) Evaluate

% dt

H(r;) = A m

at the evaluation points and evaluate cost function

I dr
I=u=0= 5w

Step 4) By using Eqgs. (24) and (31), compute the constant
parameters of the fifth-order Bezier quaternion trajectory that
satisfies the set boundary conditions (see given data), the current
value of the optimization parameters (from step 1), and the boundary
values on A(t) and A'(7) (from step 4).

Step 5) By using Egs. (7), (15), and (16), compute the values of
q(7), q'(7), and q"(7) at the evaluation points.

Step 6) By using Eq. (21), perform the transformation from the
virtual domain into the time domain to obtain q(#(t)), q(#()), and
q(t(z)) at the evaluation points.

Step 7) By using Eqgs. (22) and (23), invert the dynamics and
compute the values of angular velocity, angular accelerations, and
needed torque components at the evaluation points.

Step 8) First, decide whether the constraints on the torque
components are satisfied. If yes, go to step 9. If no, go to step 1.

Step 9) Next, decide whether the evaluated cost function value (see
step 3) is the minimum value (within set accuracy). If yes, then end. If
no, go to step 1.
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